
Macro Copier for TEXShop

Michael Sharpe
msharpe at ucsd dot edu

March 17, 2014

Briefly

TEXShop’s Macro Editor allows you to import macros from a .plist, but is in some cases inconvenient
because it imports all macros in the .plist, leaving you to delete unwanted duplicates, and gives you
no easy way to compare the potential replacement with the installed version. This little program tries
to make it a bit more convenient to maintain a macro .plist inside or outside of TEXShop.

• It gives you an easy way to selectively copy individual macros (or folders of macros) into or out
of TEXShop’s Macros Menu using a drag and drop interface. For most users, the main advantage
will be that you can examine a macro from a large macro collection such as that distributed with
TEXShop, compare it to what is already installed, and copy just the macros that are newer.

• If you also install the plister program from the free OnMyCommand package, instructions for
which are provided later, you transform the program into a Macro manager of sorts—you can
delete or rearrange individual macros or folders of macros, you can create new items, folders and
separators, and you can edit the content window directly, assuming of course you have write
permission for the .plist file. This provides the most convenient method for updating existing
macros—use Compare to check for di�erences, and then to overwrite the installed version with
the new one, copy the new one from its Content window with cmd-A cmd-C and paste it into the
other Content window with cmd-A cmd-V.

After dropping one or more macros onto the TEXShop macro side, the Macros Menu should be refreshed
from disk by restarting TEXShop. (It is in fact better to close TEXShop while running MacroCopier.)
Then, open the TEXShop Macros Menu and delete older versions if necessary and rearrange the order
to suit your needs.

MacroCopier is copyright©2014 Michael Sharpe, msharpe at ucsd dot edu. It is distributed under the
GPL public license, and thus free.

Details

The interface window presents two lists, each of which is similar to what you see when you open the
TEXShop Macro Editor. Let’s assume that the Macros_LaTeX is selected from the Source popup menu on
the left side. The left hand side always shows the macro files currently installed in TEXShop. The one
that shows in TEXShop’s Macrosmenu depends on the choice of typesetter for the frontmost document,

1

though currently (TEXShop 3.26), only the following are recognized in TEXShop’s source code:
Bibtex
Context
Index
Latex
Metapost
Tex
with unrecognized typesetters defaulting to Latex. The right side initially shows what is available within
the TEXShop application bundle. (This is what is installed by TEXShop on startup if it cannot find a
file named Macros_latex.plist in the folder ~/Library/TeXShop/Macros.) You may select a di�erent
source, the other options being:

'New' in TeXShop: This opens the first plist file it finds in the folder ~/Library/TeXShop/New/Macros.
This is where macros that are new or newly modified in this release of TEXShop are placed. Users
who do not update very regularly may miss this and will need to import from the .plist con-
tained in TEXShop’s application bundle.

TeXShop Macros: This takes you to TEXShop’s Macros folder:

~/Library/TeXShop/Macros

where you may select one of the Macros_*.plist files. It must be di�erent from the one you have
open on the left side.

Empty plist: You would use this if you wished to create a new plist for purposes of exporting some
macros from your current collection.

Other plist: With this, you may select an arbitrary plist file to either export to or import from.

If you select the same macro name in each panel (case-sensitive), a new button Compare will appear
just to the right of the Revert button, provided either BBEdit or TextWrangler are installed at the top
level (ie, not in a subfolder) of your Applications folder. Pressing Compare runs (a version of) diff
on the two macros. If diff declares they are identical, a message box appears to tell you so, otherwise
both macros are opened in BBEdit/TextWrangler. (The one on the left is the one currently installed in
TEXShop’s Macros Menu.) It also opens a third window at the bottom showing the di�erences—click
on a di�erence line to check whether it is significant. To exit, close the bottom (di�erences) window.
This information may help you decide whether to replace the installed version with the one from the
external .plist.

When you drag a macro or a folder of macros from one side to the other, a corresponding item is
created at the end of the target list. Unless you install plister, this program does not allow you to
rearrange parts of a plist. (The TEXShop Macro Editor can be used for that purpose.) The .plist file
is modified immediately following the drop, and there is no Undo feature for individual drops. (This
should not be as scary as it sounds—in this drag and drop mode, macros are never deleted, only added
to the current target.) The Revert button applies only to your currently installed macros—it restores
them to their state at the time the list was last loaded from disk. (If the program should crash, you can
do this manually—the original macros are saved in the folder ~/Library/TeXShop/Macros under the
name Macros_latex_orig.plist, which should be renamed to Macros_latex.plist before restarting
TEXShop.)

2

Installing plister

OnMyCommand is a free-of-cost package that contains a number of standalone command-line programs,
including plister, which provides a very nice way to construct or modify a .plist file using only the
command line. The package was originally intended to allow the user to construct contextual menu
item plugins that would run shell scripts or AppleScripts, but such usage has now been abandoned
by Apple in favor of Services. Version 3.0 (August 19, 2012) may be downloaded from http://free.
abracode.com/cmworkshop/on_my_command.html. Don’t bother installing OnMyCommand—it o�ers
little else of any current value. If you want to do everything yourself, unzip OMC.zip to OMC 3.0.pkg,
open the package contents and copy Archive.pax.gz to the Desktop, expand it and look for plister
in its folder

Library/Frameworks/Abracode.framework/Versions/A/Support

Copy it to /Library/Application Support/MacroCopier, creating that folder if necessary. Macro-
Copier is hard-coded to look there for plister. If it doesn’t find it there, it will ask if you want to install
it, and carry out all these steps for you. If you don’t install plister, you will not be able to delete or
copy content directly within MacroCopier and will be limited to just copying selected macros to another
.plist, leaving further manipulations to TEXShop’s Macro Editor.

Once you install plister, you will see further options.

• If you have write permission to the source file (always true for the left panel) and you select a
number of items, you will see a Delete selected button appear. If you press it, all selected items
will be removed from the source file and the file will be re-loaded in its new form.

• If the selected item is not a folder and you make changes to its Content or Name, you will see a
Save button appear. Pressing that will replace the content of the selected macro with the modified
content. This is extremely handy for modifying macros in place from newer versions. You may
change the Name of both macros and folders in much the same way.

• Macros and folders of macros may be reordered by dragging them to new positions in the same
list. Because of limitations of the software used to write this package and the inability of the
programmer to work around those limitations, reordering is limited in scope and is less capable
than TEXShop’s Macro Editor. Specifically:

– You can move only one item (macro or folder) at a time.

– You must open a folder before moving an item into that folder.

– To move an item into a folder as the last item, open the folder and move the item just past
the last existing item.

– There is one case that requires two steps: if an item is located immediately following an open
folder, you can’t move it up to be the last item in the folder—you have to move it somewhere
else and then move it to be the last item of the open folder.

• You will see a Create button appear if you have write permission to the associated file. Press this
button to make a new entry that is either a new blank macro, a new folder or a new separator.

3

Editing external macro lists with TEXShop’s Macro Editor

If you don’t install plister, you’ll have to rely on other plist editors. Say you’ve exported a number of
macros to an external .plist and now you want to reorganize them. Though you can use a number
of (free) plist editors such as Apple’s Property List Editor that used to be available with XCode, or
Pref Setter, available online at http://www.nightproductions.net/prefsetter.html, I find these
tools harder to use than TEXShop’s Macro Editor. Here’s how to use that on an external .plist.
Open Macro Editor and insert a Separator at the bottom of your current macro list. Then Save and
use MacroCopier to copy all your macros from the external .plist. They will be inserted below the
Separator. You may now reorganize, delete, add separators and submenus to the copied macros. Be
sure to keep them below the Separator you added. When finished editing, press Save, reopen the Macro
Editor and select all the files you wish to export, then select Save selection to file... from the Macro
Editor (it won’t be visible unless you have saved your changes) to a new .plist so that your original
.plist is available should you change your mind later. Finally, Delete all the items below the separator
you added and Save again so they don’t appear in your Macros Menu.

Understanding how plister operates

The documentation for plister is sparse, to say the least, and some of it requires further experimenta-
tion to make sense. What follows is my notes trying to follow how plister writes to a .plist. (The
commands that display the content of a file are not relevant to my concerns.)

The .plist files used within TEXShop are of simpler structure than the most general .plist files, and
I’ll concentrate on those rather than striving for full generality.

An empty .plist file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict/>
</plist>

It can be created as the file e.plist with the command

plister set dict e.plist /

The part between the <plist...> and </plist> is where all data is stored, and the top level <dict/>
(shorthand for <dict></dict>) is the top level container for the data. There are two types of container
structures, one called a dict, in which each entry has a key and a value, and the other an array, in which
items are identified by their index within the array, starting at 0. It is common for these structures to
alternate, with a dict at the top level and an array following each submenu item, having dictionaries as
its elements, etc.

While the file above is a legal .plist it may provoke errors from some plist readers, and the practical
minimum is

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">

4

<dict>
<key>name</key>
<string>ROOT</string>
<key>submenu</key>
<array/>

</dict>
</plist>

This was created with

plister set dict e.plist /
plister insert "name" string "ROOT" e.plist / # add first key-value pair
plister insert "submenu" array e.plist /

It adds ROOT as the name of the root of the plist and then declares a submenu key followed by an empty
array container. The data you see represented in TEXShop’s Macros menu comes from the elements of
that last (ROOT) array—all the surrounding items are just part of the XML structure to be parsed via
the plist dtd. The elements of the ROOT array are usually dicts containing specific elements. Eg, it we
expanded the ROOT array as follows,

<array>
<dict>

<key>content</key>
<string>xxx</string>
<key>name</key>
<string>Insert xxx</string>

</dict>
</array>

that would give us an entry Insert xxx on the Macros menu whose e�ect is to write xxx at the current
location in the text. Entries that create submenus (ie, “folders”) follow a di�erent pattern:

<array>
<dict>

<key>name</key>
<string>Submenu Title</string>
<key>submenu</key>
<array/>

</dict>
</array>

with the <array/> to be expanded to list the items in the submenu. Referring to a “node” in a plist
means specifying the dict or array in an unambiguous way, and one way to do that it by assigning each a
pseudopath, as if they were in a file system. So, let / denotes the top level, one step higher than ROOT,
and the ROOT array would be /submenu. The first dict in that ROOT array would be /submenu/0, and
if that node had a submenu element, that “folder” would be /submenu/0/submenu. Finally, when we
have a pseudopath to a terminal dict node (one with no further submenus), we add the key to specify
the leaf items—eg, /submenu/0/content or /submenu/0/name would allow us access to the <string>
data associated with those keys.

The general structure of most plister command lines takes the form

5

plister <command> <params> <path/to/plist> <pseudopath/in/plist>

in which:

• <command> is one of set, remove|delete, add|append, insert.

– set is intended for replacing existing data, and can be dangerous because it can overwrite
data unexpectedly. You can use it to create a new dict in an empty array, but in a non-empty
array, it will change the last item. The best use is to change leaf data where you can give a
pseudopath that precisely specifies the key and use set to change the value. Eg,

plister set string "Changed value" e.plist /submenu/0/name

would change the value a key-value pair in the first item of the ROOT array having the form

<key>name</key>
<string>old value</string>

to

<key>name</key>
<string>Changed value</string>

– insert has two forms, depending on whether the pseudopath points to an array or a dict.
With an array, you may use either

insert k
insert ""

the first of which is used to insert an item into an array before the item with index k, and the
second is used to insert an item at the end of the array. (I could not successfully use append
for this purpose.) If the target is a dict, the form is like insert "New key" string "New
value", constructing a new key and string within the dict. Eg

plister insert 0 dict e.plist /submenu
plister insert "New key" string "New value" e.plist /submenu/0

first creates a new dict at the beginning of the ROOT array and then inserts

<key>New key</key>
<string>New value</string>

inside that new dict.

The clause insert k dict works as expected even if array element k doesn’t exist, provided
element k-1 exists. This is useful to know if you want to add an element after element k-1,
even if it isn’t the last element.

– append seems to be broken, in that it doesn’t work to create an array or a dict, though it
does to create individual leaf values, but only in an array. Eg,

plister append string "Key value" e.plist /submenu

does work, but is not useful.

– delete|remove removes a node and all its contents. Care must be taken when performing
multiple deletes, since the indices of all nodes at a lower level (thinking as if this were a file
listing) will change. Eg,

6

plister delete e.plist /submenu/0

removes the first item of the ROOT array and all its children.

• <params> are the parameters to the command. Here are some useful forms in connection with
.plist files of the type we are interested in.

– dict, array, string Both dict and array are containers and take no arguments. A
string takes a double-quote delimited string as its argument.

• copy is a ‘special directive’ that can be used to transfer data from one file to another file or to the
same file. A copy clause like

copy e.plist /submenu/0/content

can be used in place of another such as string "XX" in an insert statement. The result is similar
to copying files from one directory to another. Eg,

plister insert "" copy e1.plist /submenu/0 e.plist /submenu

e�ectively copies the first dict in the ROOT array of e1.plist as the last dict in the ROOT array
of e.plist.

7

