
A STEP-BY-STEP FOR MAKING A DROP-ON INTERFACE TO A SHELL SCRIPT

MICHAEL SHARPE

1. Introduction

Suppose you have an executable script (shell, python, perl ...) which expects one or more files or folders as
inputs on the command line. You may of course type the name of the script in a Terminal window, a space,
and then drag and drop the files and folders from the Finder. That’s not especially Mac-like, and it’s not always
convenient. This article provides a step-by-step method for constructing a drop-on face for the script. There
are other methods based on Platypus, but I’ll use the Mac’s own Automator.

For a very simple example, here’s a shell script named nabl to enable a single font map located in a texmf tree
in the system area /usr/local/texlive:

#!/bin/bash

f=${1##*/}

sudo -H mktexlsr # update the lsr database, just in case

sudo -H updmap-sys --enable Map ${f}

The ${1} is the first argument given on the command line after nabl, and ${f} is the name of the file without
any directory information, as this is what updmap expects. (This is not a very useful example, just an illustration
of what we’re doing. A more useful script would check for a number of error possibilities and alert the user
before carrying out the execution.) We are going to provide a Mac application onto which a file can be dropped,
the end result of which will be to pass the file name to the script in a Terminal window so that errors can be
viewed.

As a second example, which I find quite useful, here is a script png512 to make a png file exactly 512 by 512
with a transparent background, which is just what is needed for an icon. This script is called with the path to
the file as the first argument and the resolution (in dpi) to render it as the second. Eg,

png512 ~/Documents/x.ps 580

if [$# -lt 1]; then

echo "Filename and resolution required"

exit 1

fi

if [$# -gt 1]; then

res=$2

else

res="580"

fi

f=${1##*/} # just the filename

fb=${f%.*} # without extension

fd="${1%/*}" # the dirname

cmd=’/usr/local/bin/gs -q -dNOPAUSE -dBATCH -sDEVICE=pngalpha -dEPSCrop -r’

cmd=${cmd}"${res} -sOutputFile=${fb}.png -g512x512 ${f}"

Date: January 27, 2014.
1

2 MICHAEL SHARPE

if ["${fd}" != "${1}"]

then

cd "${fd}"

fi

${cmd}

2. The Steps

1. Make sure your script works exactly as expected when run from the command line. Be sure to make it
executable using the command line. Eg,

cd ~/bin # or wherever nabl is located

chmod 755 nabl

2. Open the application Automator, and, from the opening splash screen, choose to create an Application.
Near the top left of the Automator window, you’ll see a small search-box just to the right of the labels Actions
and Variables. Type “Run Applescript” (without the quotes) into that search box, then drag the resulting
component onto the workflow list to the right of the window. The AppleScript you enter there should be as
follows:

on run {input, parameters}

set n to (count of input)

if n = 0 then quit

repeat with i from 1 to n

set s to quoted form of (POSIX path of (item i of input))

tell application "Terminal"

activate

do script ("/Users/msharpe/bin/nabl " & s) in window 1

end tell

end repeat

end run

Here’s a screenshot of part of the finished Automator window.

Save your application to any convenient location.

A STEP-BY-STEP FOR MAKING A DROP-ON INTERFACE TO A SHELL SCRIPT 3

3. A custom icon may be considered a frill, but becomes almost very useful if you have a number of such
application as constructed in step 2. You may use any icon you wish, but I like to make a simple square box
with a few letters to remind me of the purpose, and such icons are easy to construct in TEX. The following
model may be varied according to your needs, but don’t idly change the pagesize or the picture size—they are
computed to give a good fit with little roundoff.

\documentclass[10pt]{article}

\parindent=0pt

\usepackage[papersize={63.797pt,63.797pt},margin=0pt]{geometry}

\usepackage{libertine-type1}

\usepackage[T1]{fontenc}

\usepackage[dvips]{pstricks}

\usepackage[libertine]{newtxmath}% in case math symbols

\newcommand{\mytxt}[1]{{\usefont{T1}{LinuxLibertineT-LF}{b}{it}%

\fontsize{22pt}{27pt}\selectfont #1}}

% Adjust the font and the fontsize entries to your taste

\pagestyle{empty}

\begin{document}

\noindent

\psset{unit=.1246pt}

\begin{pspicture}(0,0)(512,512)

\psframe[linewidth=2pt,linecolor=red](8,8)(504,504)

\rput[c](256,256){\mytxt{NABL}}%may need to adjust center horizontally

\end{pspicture}

\end{document}

% render at 580dpi to get image 512px

If you wish two lines of text on your icon, you could replace the \rput line with, eg,

\rput[c](256,256){\parbox{60pt}{\centering\mytxt{PNG\\[5pt] 512}}}

Important: Because of the uncertainties of text spacing, you may need to adjust the horizontal position of the
center, replacing (256,256) with, eg, (250,256), based on appearance.

The next step is to make a 512x512 .png from the .ps file output by LATEX. Open a Terminal window, cd to
the folder containing your .tex file (we’ll assume that its name is nabl-icon.tex), and type

png512 nabl-icon.pdf 580

Finally, we convert the .png to the icon format .icns. The simplest way I’ve found is to use the free version
of the commercial program Img2icns.app from

http://www.img2icnsapp.com

which both converts images (use a format like .png which supports transparency) to .icns format and, op-
tionally, applies the .icns to any application dragged onto it following making the .icns. That is

• Start Img2icns;

• drag your .png onto the box in its window;

• to make an .icns file, click the icns output button. To apply the icons to an application, drag the
application onto the same box.

4. Having applied a suitable icon to your application, you may drag map files onto its icon to enable them.
I find it useful with frequently used script applications to open the folder in which they reside and drag the

4 MICHAEL SHARPE

application to the top bar of the window—you may need to hold it there a couple of seconds or wiggle the
mouse a bit to have Finder understand that you want to mount the icon there so it’s most convenient for
dragging onto. The result is like this:

A STEP-BY-STEP FOR MAKING A DROP-ON INTERFACE TO A SHELL SCRIPT 5

3. Some other example scripts

Install a font package in texmf-local.

The Automator script is a little more complicated, filtering out in the first step ordinary files, passing along
to the AppleScript only folders. Saved as an application named tds2sys.app, the main work occurs in the bash
script tds2sys, which copies the structure of the folder passed to it to texmf-local, updating only files that are
newer than existing files. It then runs

sudo -H mktexlsr

and runs sudo -H updmap-sys --enable Map on every map file it finds in the tds folder’s

fonts/map/dvips

Install a package in ~/Library/texmf with map files symlinked to texmf-local. The Automator script is
almost identical, but calls tds2home instead of tds2sys, where the major difference is that files are copied to
~/Library/texmf and the map files are symlinked to texm�ocal and processed as in the preceding case. The
advantage is that there is no complication of two separate updmap.cfg files, but it is still very simple to modify
files in the package. (There is of course a slight timing hit because there is no lsR database for file searching in
the home texmf tree.) The icons I made for the corresponding Automator applications are:

TDS∼

