
USING AWK IN TEXSHOP

MICHAEL SHARPE

1. Overview

BabyAwk is a TEXShopMacroMenu item that provides access to some features of the Unix utility [g]awk,
enabling a subset of [g]awk’s features to be applied to the selected text. This is useful when you have
a text block that is su�ciently structured to permit separation into “columns” which can be rearranged
and manipulated with great �exibility. In the simplest instances, [g]awk reads one line of text at a time,
though what a line means is de�ned by the [g]awk variable RS, the record separator, and columns are
normally separated by white space, though this is in fact controlled by the [g]awk variable FS, the �eld
separator. After parsing a line, the �elds are set to variables with names $1, $2,... (the original line is set
to $0) and, based on whether the line matches the speci�ed search pattern (eg, /tex/matches only lines
containing tex) or the speci�ed condition (eg, $2>3), it carries out Action, which in most cases involves
a print ot printf statement.

Note that nothing is lost when calling BabyAwk—the original selection is commented out and the replace-
ment text (the output of awk) is printed below it, so it is a trivial matter to undo the procedure.

Making optimal use of command-line [g]awk requires a mastery of regular expressions, a good under-
standing of [g]awk’s parsing of string constants and knowledge about characters that must be escaped.
Such information does not stick in the memory unless used on a continuing basis. This limited interface
to [g]awk allows youmuch of its power without a lot of learning. It should be said clearly that there is no
substitute for knowing a real scripting language like perl, python or ruby if you want to achieve the best
results. This tool is not intended as a substitute for those skills. I strongly recommend that you use gawk
rather than awk if you intend to use the search and replace capabilities—some of the program features
simply don’t work unless you use gawk.

The reason for calling this a baby version of awk is that the substitution functions sub(), gsub() and
gensub() are not fully supported. The command line version of gawk allows a general regular expression
for the search string, and this more modest front end does not.

The man page for awk is condensed but quite readable and informative, for a man page. The same can-
not be said of the gawk man page. There is most likely a considerable overlap with the capabilities of
OgreKit—an option for Find in TEXShop—but I just don’t understand the meanings of its settings.

Here are some examples where I’ve found this of considerable utility:

� TEX tables, with �elds separated by &;

� simpler forms of CSV, though the datatool package is much more capable;

� HTML tables, though this is better handled by importing to a spreadsheet and then importing to
TEXShop with CSV2LaTeXTable;

� AFM �les, where you need to parse two columns to write a minimal .etx �le for use in fontinst;

� converting a collection of data rows like

Date: May 7, 2012.

1

2 MICHAEL SHARPE

bbS:-10:15:10

into a collection like

\shiftglyph{bbS}{-10}{-15}{10}

which is very useful when working with fontinst scripts;

� converting a group of duplicated lines like

\skewkern{A}{35}

so that the letter A increments over the group, resulting in

\skewkern{A}{35}

\skewkern{B}{35}

\skewkern{C}{35}

...

2. Program usage

� Select the part of the text in your TEX document to which modi�cations should be made. The
selection will in fact be applied to all lines touched by the selection, so at a minimum, it will apply
to the entire line containing the cursor. Line here means “as divided by linefeeds”, not screen
lines.

� Select BabyAwk from the TEXShopMacro Menu to open the application BabyAwk in which youmay
enter your choices.

– The choices are always the same as in your previous use of BabyAwk.

– If Input TeX text is checked, all text on a line following the �rst unescaped % is not processed.
You should not check this if you are processing a portion of text from a non-TeX source such
as HTML.

– The separators RS (record separator) and FS (�eld separator) a�ect how awk parses the input,
while the other two (ORS, OFS) a�ect have output is formatted. Note that in the current ver-
sion of awk (but not gawk), RSmay be only a single character (by default, a linefeed character)
but FS may be a general regular expression.

– Awk �rst parses the input into records (usually, lines) controlled by RS and then parses each
record into �elds as speci�ed by FS. The resulting �elds are denoted $1, $2, ... The entire
record is denoted by $0 and the number of �elds is set to the variable NF. The variable NR
holds the index number of the current record, starting at 1. Any change to any one of $1, $2,
etc, triggers a revaluation of $0 with those changes.

– The BEGIN block entry may be used to initialize variables used in the following blocks.

– The Search/condition block is used to limit the lines which are processed. A search string must
be delimited by /../, otherwise it is considered to be a condition. For example:

/abc/ % apply only to lines containing abc

/^abc/ % apply only to lines containing abc at the beginning

/abc$/ % apply only to lines containing abc at the end

/^abc$/ % apply only to lines exactly equal to abc

!/abc/ % apply only to lines not containing abc

$2 ~ /abc/ % apply only to lines where field 2 contains abc

USING AWK IN TEXSHOP 3

$2 == /abc/ % apply only to lines where field 2 equals abc

NF > 0 % apply only to records of non-zero length

/[Aa]bc/ % apply to lines containing Abc or abc

If you leave this block blank, all records will be processed.

– The Action block speci�es the output for each record. If you leave this blank (but the block
Search/condition is not blank) the e�ect is the same as print $0; i.e., print the original line in
its entirety if the line matches. The Action block usually contains print or printf statements to
specify the output, but may also involve conditional statements. For example:

print $3 % extract field 3 from every record (ie, output column 3)

print $3 $4 % output columns 3 and 4 concatenated (no space)

print $3, $4 % output columns 3 and 4 concatenated (with OFS)

$NF="" print $0 % erase last field before printing line

if ($1>1) {print $2 $3} % fields 2 and 3 with no separation, if field 1>1

if ($1>1) {print $2,$3} % fields 2 and 3 separated by OFS, if field 1>1

if ($1>1) {print $2,$3} % fields 2 and 3 separated by OFS, if field 1>1

print "Record " NR+2, "Field 1: " $1, "Field 2: $2

% the 4th record will output "Record 6 Field 1: $1 Field 2: $2"

% without the quotes, and with $1 and $2 replaced by their actual values

– You may store a search with a name—�ll in a name at the lower left corner and press Store.
The search may be restored by choosing it via the popupmenu Retrieve.

3. Some useful regular expressions

The FS block in BabyAwk should have a number of prede�ned �le separator patterns. It reads them from
a �le named FSpatterns.txt that should be in the same folder as the BabyAwk application. By default,
that �le reads

DEFAULT

COMMA [\t]*,[\t]*
COLON [\t]*:[\t]*
SEMICOLON [\t]*;[\t]*
AMPERSAND [\t]*&[\t]*
AMPER\\ [\t]*&[\t]*|[\t]*\\\\\\\\[\t]*
BRACES [\t]*}[\t]*{[\t]*|[\t]*}[\t]*|[\t]*}[\t]*
BRACKETS [\t]*\][\t]*\[[\t]*|[\t]*\][\t]*|[\t]*\][\t]*
PARENS [\t]*\\)[\t]*\\([\t]*|[\t]*\\([\t]*|[\t]*\\)[\t]*

where the separator between the name and what follows is a tab character. You should not change the
�rst line, but you can add or subtract other entries to meet your needs.

� The pattern

[\t]*,[\t]*

means zero or more spaces and/or tabs, a comma, then zero or more spaces and/or tabs. The
pattern shows up in babyAwk under the name COMMA.

� The pattern AMPERSAND is similar:

[\t]*&[\t]*

4 MICHAEL SHARPE

� The pipe character | signi�es alternatives. The pattern AMPERS\\ matches either & or \\, so is
useful for parsing a row of a LATEX table:

[\t]*&[\t]*|[\t]*\\\\\\\\[\t]*

You need eight backslashes here because awk’s string parsing mechanism reduces each \\ to \,
and then the matching reduces it by another factor of two.

� }{|{|}matches occurrences of either }{ or { or }. That’s good for splitting

\shiftglyph{bbS}{-1}{-15}{10}

into 6 �elds (the last one empty), but does not work as expected if there are spaces or tabs between
closing and opening braces. For example, if fed the string

\shiftglyph{ bbS} {-1}{-15}{10}

the matches would be "{", then "}", then "{", then "}{", then "}{", then "}" giving 7 �elds,
not 6.

To handle the most general case, disposing of all spaces and tabs beside a brace, use

[\t]*}[\t]*{[\t]*|[\t]*}[\t]*|[\t]*}[\t]*

which is what you get when you choose BRACES in the FS menu.

Explanation: this says to match either

– zero or more spaces and/or tabs, then }, then zero or more spaces and/or tabs, then {,
followed by zero or more spaces and/or tabs;

– zero or more spaces or tabs, then }, then zero or more spaces and/or tabs;

– zero or more spaces or tabs, then {, then zero or more spaces and/or tabs.

Recall that matching in [g]awk is greedy—it matches the largest possible matching substring. So,
when handed the string

\shiftglyph { bbS } { -1} { -15}{ 10}

the �rst match will be " { " (note that "{" would be the smallest possible match), the second
" } { ", then "} { ", then "}{ ", and �nally "}".

Brackets may be handled similarly, but require \[and \] to remove ambiguity about their seman-
tic meanings, and parentheses require double backslashes.

� The default behavior of FS is obtained by setting FS=" " (a single space character), but the actual
e�ect is as if you had written FS="[\t]+" (a run of one or more spaces and/or tabs), except for
one peculiarity: the default form e�ectively trims all white space from the beginning and end of
each record before separating the �elds, though the white space will remain in $0, and the second
form does not. BabyAwk tries to assist you here by trimming white space from each line if you
specify a non-default value for FS. (This is e�ective only in case RS takes its default value \n.) A
trick you may use to force the stripping of white space from the beginning and end in $0 is an
Action like

$1 = $1; print ...

which forces the re-computation of $0 with trimmed values. (This works only when FS takes its
default value.)

USING AWK IN TEXSHOP 5

4. Examples

4.1. Rearrange column order in table. Suppose I have a LATEX table whose columns I wish to rearrange.
The rows are assumed to be arranged like

col 1 & col 2 & col 3\\

col 1a &col 2a& col 3a\\[2pt]

...

Select all rows and run the macro BabyAwk, �lling in the �elds as follows:

<FS> AMPERSAND

<OFS> &

<Action> print $2, $1, $3

and press Go. It’s a little more work if the exchange involves the last column, as that contains the end of
row marker. Use

<FS> AMPER\\

<OFS> &

<Action> print $3, $2, $1 "\\" $4

(Note that �eld 4 in this case is what follows \\.)

4.2. Enter rows with one column entry changing in numeric sequence. Suppose we wish to insert
new rows in the document, like

\xyz{1}

\xyz{2}

%...

The way which may be conceptually simplest (involving least programming) is to enter an array of num-
bers using the macro Insert Sequence which can handle numbers and letters, increasing or decreasing.
Select the entire block and call BabyAwk, entering just print "\xyz{" $1 "}" in the Action block, then
pressGo. (Note: if youwere doing the equivalent command line awk command, this would be incorrect—
you would have to write print "\\xyz{" $1 "}" to get the backslash past the awk string interpreter,
which interprets single backslash string fragments like \t and \n as tab and newline respectively, and
discards those that do not have special meaning. BabyAwk handles this for you by doubling every back-
slash in an Action block, except for those in a \substr block, which are handled with special rules. This
is usually appropriate for TEX documents, but may not always produce what you intended.

You could also handle this in another way involving just one step. First, make a blank row in your docu-
ment where you wish the new items to appear, and then, in the BabyAwk window, enter the following in
the BEGIN block:

for(i=1;i<11;i++) print "\xyx{" i "}"

and press Go.

4.3. Add a �xed amount to a column. Suppose our data is a number of rows like

\xy{10}{2}

and we wish to add 30 to each entry in the last column. We have only to set FS to BRACES and set Action
to

$3 = $3+30; print $0

6 MICHAEL SHARPE

and press Go.

4.4. Convert a vertical list to a comma-separated list. The data is assumed to be like

ab

cd ef

g

...

Select the vertical list, run the BabyAwkmacro and set the output record separatorORS to a single comma
and Action to print, then press Go. The result should be

ab,cd ef,g

4.5. Add some text to the beginning of each non-empty line. The data is assumed to be like

ab

cd ef

g

Select the lines, run the BabyAwkmacro and set Search/condition to length($0)>0 andAction to print "XXX" $0,
then press Go. The result should be

XXXab

XXXcd ef

XXXg

4.6. Modify a columnwith incrementing letters. The data is assumed to be like (eg, one line duplicated
a number of times)

1 A 2 3

1 A 2 3

1 A 2 3

1 A 2 3

andwewould likeA to increment. Select the lines, run the BabyAwkmacro and setAction to $2=UC[NR]; print $0,
then press Go. The result should be

1 A 2 3

1 B 2 3

1 C 2 3

1 D 2 3

This may require a little explanation. If BabyAwk sees either of UC[or lc[in your code, it de�nes ar-
rays UC[1]=A,...,UC[26]=Z, lc[1]=a, etc. Recall that NR is an awk variable containing the current record
number. So, the action replaces �eld 2 with a letter, which updates $0, which you then print.

4.7. ReplaceAll within selected block. This is better handled using the OgreKit ’Find’. You could do it
in BabyAwk, though less intuitively. CAUTION: this may produce unexpected results unless you use
gawk instead of awk.

The data is assumed to be like

USING AWK IN TEXSHOP 7

abcd

cd ef

acd

g

andwewould like to add replace all occurrences of cd in that block to CD. Select the lines, run the BabyAwk
macro and set Action to gsub(/cd/,"CD"); print, then press Go. The result should be

abCD

CD ef

aCD

g

Note that changes take place only within individual lines, and that the gsub (global substitution) built-in
function uses $0 as the target if no string is speci�ed as its third argument.

IMPORTANT NOTES:

� If you want to include a double-quote character in your replacement string, you must write it as
\" so that it does not cause the awk string interpreter to misconstrue it as the end of the string.

� Any occurrence of / in the search string must be replaced by \/, for the same reason.

� BabyAwk partially parses your use of sub() and gsub() to warn you of syntax errors and to escape
some special characters. In particular, if you include the character & is your arguments, it will be
replaced by \& so that it searches for the literal character &.

� If BabyAwk, because of its limited abilities, fails to enter the correct awk command line and you are
su�ciently skilled to correct it, youmay do so by editing the last line immediately before pressing
Go.

